I. Pendahuluan
Jaringan komputer bukanlah sesuatu yang baru saat ini. Hampir di setiap perusahaan terdapat jaringan komputer untuk memperlancar arus informasi di dalam perusahaan tersebut. Internet yang mulai populer saat ini adalah suatu jaringan komputer raksasa yang merupakan jaringan komputer yang terhubung dan dapat saling berinteraksi. Hal ini dapat terjadi karena adanya perkembangan teknologi jaringan yang sangat pesat, sehingga dalam beberapa tahun saja jumlah pengguna jaringan komputer yang tergabung dalam Internet berlipat ganda.
II. Struktur jaringan computer
2.1. Sejarah dan Latar Belakang Jaringan
Ide pokok dari jaringan mungkin sudah setua usia telekomunikasi itu sendiri. Coba anda bayangkan ketika anda harus tinggal di jaman batu, yang ketika itu gendang digunakan sebagai alat untuk berkomunikasi satu dengan lainnya. Andaikan manusia gua A ingin mengundang manusia gua B untuk bermain, tapi jarak B terlalu jauh dari A untuk mendengar suara gendang yang dibunyikannya. Apa yang akan dilakukan oleh A ? Mungkin si A akan datang langsung ke tempat B, membunyikan gendang yang lebih besar, atau meminta C yang tinggal di antara A dan B untuk menyampaikan pesan ke B. Pilihan terakhir inilah yang merupakan dasar dari jaringan.
Terlepas dari masalah jaman batu, sekarang kita memiliki komputer yang canggih. Dimana komputer yang kita miliki sekarang dapat berkomunikasi dengan komputer lainnya melalui kabel tembaga, kabel optik, gelombang microwave, dan medium komunikasi lainnya.
Sebagai hasil dari usaha para programmer dari seluruh dunia, Linux tidak akan tercipta tanpa Internet. Jadi tidaklah mengherankan apabila pada tahap awal pengembangan, beberapa orang mulai mengerjakan kemampuan jaringan di Linux. implementasi UUCP di Linux sudah ada sejak awal dan jaringan dengan basis TCP/IP mulai dikerjakan sejak musim gugur 1992, ketika Ross Biro dan yang lainnya mengerjakan sesuatu yang kini disebut dengan Net-1.
Setelah Ross berhenti dalam pengembangan pada Mei 1993, Fred Van Kempen mulai bekerja pada implementasi yang baru, menulis ulang bagian terbesar dalam kode. Proyek ini dikenal dengan Net-2. Peluncuran yang pertama adalah Net-2d, dibuat pada musim panas 1993, dan telah dibantu kembangkan oleh beberapa orang, terutama Alan Cox. Hasil pekerjaan Alan dikenal dengan nama Net-3 setelah Linux 1.0 diluncurkan. Kode Net-3 masih dikembangkan lebih lanjut untuk Linux 1.2 dan Linux 2.0. Kernel 2.2 dan seterusnya menggunakan versi Net-4 untuk mendukung jaringan, yang masih tetap menjadi standar sampai saat ini.
Kode untuk jaringan Linux Net-4 menawarkan berbagai macam driver dan kemampuan khusus. Protokol standar Net-4 mencakup :
• SLIP dan PPP (untuk mengirimkan data melalui route serial)
• PLIP (untuk route paralel)
• IPX (untuk jaringan yang kompatibel dengan Novell)
• Appletalk (untuk jaringan Apple)dan AX.25
• NetRom dan Rose (untuk jaringan radio amatir)
Sedangkan kemampuan standar Net-4 mencakup firewall IP, penghitungan IP, dan IP masquerade. IP tunneling dalam berbagai sudut dan kebijaksanaan routing juga didukung. Dukungan untuk berbagai macam tipe perlatan ethernet, untuk mendukung FDDI, Token Ring, Frame Relay, ISDN, dan kartu ATM.
Sebagai tambahan ada beberapa kemampuan yang sangat mendukung fleksibilitas dari Linux. Kemampuan ini termasuk implementasi sistem berkas SMB, yang bekerja bersama dengan aplikasi seperti lanmanager dan Ms. Windows, yang disebut Samba, yang diciptakan oleh Andrew Tridgell, dan sebuah implementasi Novell NCP (Protokol Inti Netware).
Implementasi jaringan Net-4 sekarang cukup matang dan digunakan dalam banyak situs di seluruh dunia. Banyak waktu yang tersita untuk meningkatkan kemampuan implementasi Net-4. Linux juga seringkali digunakan dalam lingkungan penyedia jasa Internet (ISP). Linux digunakan untuk membangun World Wide Web (WWW) server, mail server, dan news server yang murah dan terjamin. Sekarang ini sudah ada pengembangan yang cukup besar dalam Linux, dan beberapa versi kernel Linux saat ini menawarkan generasi terbaru IPv6 sebagai suatu standar. Mengingat besarnya peran timbal balik antara pengembangan Linux dan jaringan, mungkin akan sulit bagi kita untuk membayangkan Linux tanpa dukungan jaringan yang standar.
Kita akan membahas tiga macam tipe jaringan, tapi fokus utama akan diarahkan pada TCP/IP karena protokol inilah yang paling populer digunakan baik dalam jaringan lokal (LAN) maupun jaringan yang lebih besar (WAN), seperti Internet. Kita juga akan mempelajari UUCP dan IPX. Dahulu kala UUCP banyak digunakan untuk mengirim berita (news) dan pesan (mail) melalui koneksi telepon dialup. Memang saat ini UUCP sudah jarang digunakan, tapi tetap masih berguna dalam situasi tertentu. Sedangkan protokol IPX banyak digunakan dalam lingkungan Novell Netware dan di bagian belakang akan dijelaskan lebih lanjut cara mengkoneksikan mesin Linux anda dengan jaringan Novell. Ketiganya merupakan protokol jaringan dan digunakan untuk medium pengiriman data antar komputer.
Kita mendefinisikan jaringan sebagai kumpulan host yang dapat berkomunikasi satu dengan lainnya, yang seringkali bergantung pada pelayanan (service) dari beberapa host komputer yang dikhususkan fungsinya sebagai relay data antar komputer. Host biasanya berupa komputer, tapi tidak selalu, X terminal dan printer cerdas juga bisa dianggap sebagai suatu host. Sekelompok kecil host disebut sebagai situs.
Komunikasi adalah mustahil tanpa bahasa atau kode yang dapat digunakan untuk komunikasi. Dalam jaringan komputer, bahasa ini seringkali dianalogikan protokol. Tapi perlu diingat, anda tidak bisa membayangkan protokol ini adalah suatu aturan yang tertulis, tapi leibih sebagai kode yang telah diformat sedemikian hingga. Dalam bahasa yang sama, protokol digunakan dalam jaringan komputer adalah bukan apa-apa melainkan suatu aturan tegas untuk pertukaran pesan antara dua atau lebih host.
2.2. Jaringan TCP/IP
• Pendahuluan
Aplikasi jaringan moderen membutuhkan pendekatan yang kompleks untuk memindahkan data dari satu mesin ke mesin lainnya. Jika anda mengatur sebuah mesin Linux dengan banyak user, tiap pengguna mungkin secara simultan ingin terhubung dengan remote host dalam jaringan. Anda harus memikirkan cara sehingga mereka bisa berbagai jaringan tanpa harus menggangu yang lain.
Pendekatan yang digunakan dalam protokol jaringan moderen adalah packet switching. Sebuah paket adalah sebagian kecil data yang ditransfer dari satu mesin ke mesin lainnya melalui sebuah jaringan. Proses switching berlangsung ketika datagram dikirim melalui tiap link dalam jaringan. Sebuah jaringan dengan packet switching saling berbagi sebuah link jaringan tunggal diantara banyak pengguna dengan mengirim paket dari satu pengguna ke pengguna lainnya melalui link tersebut.
Pemecahan yang digunakan oleh sistem UNIX dan banyak sistem lainnya adalah dengan mengadapatasikan TCP/IP. Di atas sudah disebutkan mengenai datagram, secara teknis datagram tidak memiliki definisi yang khusus tetapi seringkali disejajarkan artinya dengan paket.
2.3. Protokol Internet (IP)
Tentu, anda tidak menginginkan jaringan dibatasi hanya untuk satu ethernet atau satu koneksi data point to point. Secara ideal, anda ingin bisa berkomunikasi dengan host komputer diluar tipe jaringan yang ada. Sebagai contoh, dalam instalasi jaringan yang besar, biasanya anda memiliki beberapa jaringan terpisah yang harus disambung dengan motode tertentu.
Koneksi ini ditangani oleh host yang dikhususkan sebagai gateway yang menangani paket yang masuk dan keluar dengan mengkopinya antara dua ethernet dan kabel optik. Gateway akan bertindak sebagai forwarder. Tata kerja dengan mengirimkan data ke sebuah remote host disebut routing, dan paket yang dikirim seringkali disebut sebagai datagram dalam konteks ini. Untuk memfasilitasisasi hal ini, pertukaran datagram diatur oleh sebuah protokol yang independen dari perangkat keras yang digunakan, yaitu IP (Internet Protocol).
Keuntungan utama dari IP adalah IP mengubah jaringan yang tidak sejenis menjadi jaringan yag homogen. Inilah yang disebut sebagai Internetworking, dan sebagai hasilnya adalah internet. Perlu dibedakan antara sebuah internet dan Internet, karena Internet adalah definisi resmi dari internet secara global. Tentu saja, IP juga membutuhkan sebuah perangkat keras dengan cara pengalamatan yang independen. Hal ini diraih dengan memberikan tiap host sebuah 32 bit nomor yang disebut alamat IP. Sebuah alamat IP biasanya ditulis sebagai empat buah angka desimal, satu untuk tiap delapan bit, yang dipisahkan oleh koma. Pengalamatan dengan nama IPv4 (protokol internet versi 4)ini lama kelamaan menghilang karena standar baru yang disebut IPv6 menawarkan pengalamatan yang lebih fleksibel dan kemampuan baru lainnya. Setelah apa yang kita pelajari sebelumnya, ada tiga tipe pengalamatan, yaitu ada nama host, alamat IP dan alamat perangkat keras, seperti pengalamatan pada alamat enam byte pada ethernet.
Untuk menyederhanakan peralatan yang akan digunakan dalam lingkungan jaringan, TCP/IP mendefinisikan sebuah antar muka abstrak yang melaluinya perangkat keras akan diakses. Antar muka menawarkan satu set operasi yang sama untuk semua tipe perangkat keras dan secara mendasar berkaitan dengan pengiriman dan penerimaan paket. Sebuah antar muka yang berkaitan harus ada di kernel, untuk setiap peralatan jaringan. Sebagai contoh, antar muka ethernet di Linux, memiliki nama eth0 dan eth1, antar muka PPP memiliki nama ppp0 dan ppp1, sedangkan antar muka FDDI memiliki nama fddi0 dan fddi1. Semua nama antar muka ini bertujuan untuk konfigurasi ketika anda ingin mengkonfigurasinya, dan mereka tidak memiliki arti lain dibalik fungsinya. Sebelum digunakan oleh jaringan TCP/IP, sebuah antar muka harus diberikan sebuah alamat IP yang bertugas sebagai tanda pengenal ketika berkomunikasi dengan yang lain. Alamat ini berbeda dengan nama antar muka yang telah disebutkan sebelumnya; jika anda menganalogikan sebuah antar muka dengan pintu, alamat IP seperti nomor rumah yang tergantung di pintu tersebut.
Paramater peralatan yang lain, mungkin sekali untuk diatur, misalnya ukuran maksimum datagram yang dapat diproses oleh sebuah nomor port keras, yang biasanya disebut Unit Transfer Maksimum atau Maximum Transfer Unit (MTU). Protokol Internet (IP) mengenali alamat dengan 32 bit nomor. Tiap mesin diberikan sebuah nomor yang unik dalam jaringan. Jika anda menjalankan sebuah jaringan lokal yang tidak memiliki route TCP/IP dengan jaringan lain, anda harus memberikan nomor tersebut menurut keinginan anda sendiri. Ada beberapa alamat IP yang sudah ditetapkan untuk jaringan khusus. Sebuah domain untuk situs di Internet, alamatnya diatur oleh badan berotoritas, yaitu Pusat Informasi Jaringan atau Network Information Center(NIC).
Alamat IP terbagi atas 4 kelompok 8 bit nomor yang disebut oktet untuk memudahkan pembacaan. Sebagai contoh quark.physics.groucho.edu memiliki alamat IP 0x954C0C04, yang dituliskan sebagai 149.76.12.4. Format ini seringkali disebut notasi quad bertitik. Alasan lain untuk notasi ini adalah bahwa alamat IP terbagi atas nomor jaringan, yang tercantum dalam oktet pertama, dan nomor host, pada oktet sisanya. Ketika mendaftarkan alamat IP ke NIC, anda tidak akan diberikan alamat untuk tiap host yang anda punya. Melainkan, anda hanya diberikan nomor jaringan, dan diijinkan untuk memberikan alamat IP dalam rentang yang sudah ditetapkan untuk tiap host sesuai dengan keinginan anda sendiri.
Banyaknya host yang ada akan ditentukan oleh ukuran jaringan itu sendiri. Untuk mengakomodasikan kebutuhan yang berbeda - beda, beberapa kelas jaringan ditetapkan untuk memenuhinya, antara lain:
1. Kelas A
Terdiri atas jaringan 1.0.0.0 sampai 127.0.0.0. Nomor jaringan ada pada oktet pertama. Kelas ini menyediakan alamat untuk 24 bit host, yang dapat menampung 1,6 juta host per jaringan.
2. Kelas B
Terdiri atas jaringan 128.0.0.0 sampai 191.255.0.0. Nomor jaringan ada pada dua oktet yang pertama. Kelas ini menjangkau sampai 16.320 jaringan dengan masing - masing 65024 host.
3. Kelas C
Terdiri atas jaringan 192.0.0.0 sampai 223.255.255.0. Nomor jaringan ada pada tiga oktet yang pertama. Kelas ini menjangkau hingga hampir 2 juta jaringan dengan masing - masing 254 host.
4. Kelas D,E, dan F
Alamat jaringan berada dalam rentang 224.0.0.0 sampia 254.0.0.0 adalah untuk eksperimen atau disediakan khusus dan tidak merujuk ke jaringan manapun juga. IP muliticast, yang adalah service yang mengijinkan materi untuk dikirim ke banyak tempat di Internet pada suatu saat yang sama, sebelumnya telah diberikan alamat dalam rentang ini.
Oktet 0 dan 255 tidak dapat digunakan karena telah dipesan sebelumnya untuk kegunaan khusus. Sebuah alamat yang semua bagian bit host-nya adalah 0 mengacu ke jaringan, sedang alamat yang semua bit host-nya adalah 1 disebut alamat broadcast. Alamat ini mengacu pada alamat jaringan tertentu secara simultan. Sebagai contoh alamat 149.76.255.255 bukanlah alamat host yang sah, karena mengacu pada semua host di jaringan 149.76.0.0. Sejumlah alamat jaringan dipesan untuk kegunaan khusus. 0.0.0.0 dan 127.0.0.0 adalah contohnya. Alamat yang pertama disebut default route, sedangkan yang kedua adalah alamat loopback.
Jaringan 127.0.0.0 dipesan untuk lalu lintas IP lokal menuju ke host anda. Biasanya alamat 127.0.0.1 akan diberikan ke suatu antar muka khusus pada host anda, yaitu antar muka loopback, yang bertindak seperti sebuah sirkuit tertutup. Paket IP yang dikirim ke antar muka ini dari TCP atau UDP akan dikembalikan lagi. Hal ini akan membantu anda untuk mengembangkan dan mengetes perangkat lunak jaringan tanpa harus menggunakan jaringan yang sesungguhnya. Jaringan loopback juga memberikan anda kemudahan menggunakan perangkat lunak jaringan pada sebuah host yang berdiri sendiri. Proses ini tidak seaneh seperti kedengarannya. Sebagai contoh banyak situs UUCP yang tidak memiliki konektivitas sama sekali, tapi tetap ingin menggunakan sistem news INN. Supaya dapat beroperasi dengan baik di Linux, INN membutuhkan antar muka loopback.
Beberapa rentang alamat dari tiap kelas jaringan telah diatur dan didesain 'pribadi' atau 'dipesan'. Alamat ini dipesan untuk kepentingan jaringan pribadi dan tidak ada di rute internet. Biasanya alamat ini digunakan untuk organisasi untuk menciptakan intranet untuk mereka sendiri, bahkan jaringan yang kecil pun akan merasakan kegunaan dari alamat itu.
Rentang Alamat IP untuk fungsi khusus
Kelas jaringan
• A 10.0.0.0 sampai 10.255.255.255
• B 172.16.0.0 sampai 172.31.0.0
• C 192.168.0.0 sampai 192.168.255.0
2.4. Protokol Pengontrol Transmisi (TCP)
Mengirimkan datagram dari satu host ke host bukanlah segalanya. Jika anda login, informasi yang dikirim harus dibagi menjadi beberapa paket oleh si pengirim dan digabungkan kembali menjadi sebuah karakter stream oleh si penerima. Proses ini memang tampaknya sederhana tapi sebenarnya tidak sesederhana kelihatannya. Sebuah hal penting yang harus anda ingat adalah bahwa IP tidak menjamin. Asumsikan bahwa ada sepuluh orang dalam ethernet yang mulai men-download, maka jumlah lalu lintas data yang tercipta mungkin akan terlalu besar bagi sebuah gateway untuk menanganinya dengan segala keterbatasan yang ada. IP menyelesaikan masalah ini dengan membuangnya. Paket yang dikirim akan hilang tanpa bisa diperbaiki. Karenanya host harus bertanggungjawab untuk memeriksa integritas dan kelengkapan data yang dikirim dan pengiriman ulang data jika terjadi error.
Proses ini dilakukan oleh protokol lain, TCP ( Transmision Control Protocol), yang menciptakan pelayanan yang terpercaya di atas IP. Karakteristik inti dari TCP adalah bahwa TCP menggunakan IP untuk memberikan anda ilusi dari koneksi sederhana antara dua proses di host dan remote machine. Jadi anda tidak perlu khawatir tentang bagaimana dan route mana yang ditempuh oleh data. Sebuah koneksi TCP bekerja seperti sebuah pipa dua arah dimana proses dari kedua arah bisa menulis dan membaca. Pikirkan hal ini seperti halnya sebuah pembicaraan melalui telepon.
TCP mengidentifikasikan titik ujung dari sebuah koneksi dengan alamat IP dari kedua host yang terlibat dan jumlah port yang dimiliki oleh tiap - tiap host. Port dapat dilihat sebagai sebuah titik attachment untuk tiap koneksi jaringan. Jika kita lebih mendalami contoh telepon sebelumnya, dan anda dapat membayangkan kota sebagai suatu host, kita dapat membandingkan alamat IP dengan kode area (dimana nomor IP akan dipetakan ke kota), dan nomor port dengan kode lokal (dimana nomor port dipetakan ke nomor telepon). Sebuah host tunggal bisa mendukung berbagai macam service, yang masing - masing dibedakan dari nomor port-nya.
Dalam contoh login, aplikasi client membuka port dan terhubung ke port di server dimana dia login. Tindakan ini akan membangun sebuah koneksi TCP. Dengan menggunakan koneksi ini, login service akan menjalankan prosedur autorisasi dan memunculkan shell. Standar masukan dan keluaran dari shell akan disambungkan ke koneksi TCP, jadi apapun yang anda ketik ke login service, akan dikirimkan melalui TCP stream dan dikirimkan ke shell sebagai standar masukan.
2.5. Protokol Pengontrol Pesan di Internet (ICMP)
IP memiliki protokol lain yang mendampinginya yang belum pernah kita bahas sebelumnya, yaitu ICMP ( Internet Control Message Protocol). ICMP digunakan oleh kode jaringan di kernel untuk mengkomunikasikan pesan error ke host lainnya. Sebagai contoh, anda ingin melakukan telnet, tapi tidak ada proses yang menangkap pesan tersebut di port. Ketika paket TCP pertama untuk port tersebut tiba, lapisan jaringan akan mengenalinya dan kemudian akan langsung mengembalikan sebuah pesan ICMP yang menyatakan bahwa port tidak dapat dijangkau.
Protokol ICMP menyediakan beberapa pesan yang berbeda, dimana banyak dari pesan tersebut berhubungan dengan kondisi error. Tapi bagaimana pun juga, ada suatu pesan yang menarik yang disebut pesan redirect. Pesan ini dihasilkan oleh modul routing ketika tertedeteksi bahwa ada host lain yang menggunkannya sebagai gateway, walaupun ada rute yang lebih pendek. Sebagai contoh, setelah melakukan booting, tabel routingnya kemungkinan tidak lengkap. Tabel ini mungkin berisi rute ke jaringan lain. Sehingga paket yang dikirim tidak sampai ke tujuannya, malah sampai ke jaringan lain. Ketika menerima sebuah datagram, maka server yang menerimanya akan menyadari bahwa rute tersebut adalah pilihan rute yang buruk dan meneruskannya ke jaringan lain.
Hal ini sepertinya jalan terbaik untuk menghindari pengaturan seting secara manual, kecuali setingan dasarnya saja. Tapi bagaimana pun juga, waspadalah selalu untuk tidak terlalu bergantung pada skema routing yang dinamis, baik itu RIP ataupun pesan indirect ICMP. Indirect ICMP dan RIP menawarkan anda sedikit atau tidak sama sekali pilihan untuk memverifikasi bahwa beberapa informasi routing memerlukan autentifikasi. Sebagai konsekuensi, kode jaringan Linux mengancam pesan indirect jaringan seakan-akan mereka adalah indirect host . Hal ini akan meminimalkan kerusakan yang diakibatkan oleh serangan dan membatasinya hanya ke satu host saja, daripada keseluruhan jaringan. Pada sisi yang lain, ini berarti sedikit lalu lintas dihasilkan dalam kejadian dari suatu kondisi yang masuk akal, seakan-akan tiap host menyebabkan terbentuknya pesan indirect ICMP. Sebenarnya ketergantungan pada ICMP tidak langsung dianggap sebagai suatu yang buruk.
2.6. Protokol Datagram Pengguna (UDP)
Tentu saja, TCP bukanlah satu-satunya protokol dalam jaringan TCP/IP. Walaupun TCP cocok untuk aplikasi untuk login, biaya yang dibutuhkan terbatas untuk aplikasi semacam NFS, dimana lebih baik kita menggunakan saudara sepupu dari TCP yang disebut UDP ( User Datagram Protocol. Seperti halnya TCP, UDP memperbolehkan sebuah aplikasi untuk menghubungi sebuah service pada port tertentu dari remote machine, tapi untuk itu tidak diperlukan koneksi apa pun juga. Sebaliknya, anda bisa mengirimkan paket tunggal ke pelayanan tujuan, apa pun juga namanya.
Asumsikan bahwa anda ingin menggunakan sejumlah kecil data dari server basis data. Pengambilan data tersebut membutuhkan minimal tiga datagram untuk membangun sebuah koneksi TCP, tiga lainnya untuk mengirim dan mengkonfirmasikan sejumlah kecil data tiap kali jalan, sedangkan tiga lainnya dibutuhkan untuk menutup koneksi. UDP menyediakan kita pelayanan yang sama dengan hanya menggunakan dua datagram. UDP bisa dikatakan hanya membutuhkan sedikit koneksi, dan tidak menuntut kita untuk membangun dan menutup koneksi. Kita hanya perlu untuk meletakkan data kita pada datagram dan mengirimkannya ke server. server akan memformulasikan balasannya, meletakkan data balasan ke dalam datagram yang dialamatkan kembali ke kita, dan mengirimkan balik. Walaupun UDP lebih cepat dan efisien daripada TCP untuk transaksi yang sederhana, UDP tidak didesain untuk menghadapi hilangnya datagram pada saat pengiriman. Semuanya tergantung pada aplikasi, sebagai contoh mungkin nama server, untuk menangani hal ini.
III. Jaringan komputer
3.1. Pengertian.
Jaringan komputer adalah sebuah kumpulan komputer, printer dan peralatan lainnya yang terhubung. Informasi dan data bergerak melalui kabel-kabel sehingga memungkinkan pengguna jaringan komputer dapat saling bertukar dokumen dan data, mencetak pada printer yang sama dan bersama sama menggunakan hardware/software yang terhubung dengan jaringan. Tiap komputer, printer atau periferal yang terhubung dengan jaringan disebut node. Sebuah jaringan komputer dapat memiliki dua, puluhan, ribuan atau bahkan jutaan node. Sebuah jaringan biasanya terdiri dari 2 atau lebih komputer yang saling berhubungan diantara satu dengan yang lain, dan saling berbagi sumber daya misalnya CDROM, Printer, pertukaran file, atau memungkinkan untuk saling berkomunikasi secara elektronik. Komputer yang terhubung tersebut, dimungkinkan berhubungan dengan media kabel, saluran telepon, gelombang radio, satelit, atau sinar infra merah.
3.2. Jenis-jenis Jaringan
Secara umum jaringan komputer dibagi atas lima jenis, yaitu ;
3.2.1. Local Area Network (LAN)
Local Area Network (LAN), merupakan jaringan milik pribadi di dalam sebuah gedung atau kampus yang berukuran sampai beberapa kilometer. LAN seringkali digunakan untuk menghubungkan komputer-komputer pribadi dan workstation dalam kantor suatu perusahaan atau pabrik-pabrik untuk memakai bersama sumberdaya (resouce,misalnya printer) dan saling bertukar informasi.
3.2.2. Metropolitan Area Network (MAN)
Metropolitan Area Network (MAN), pada dasarnya merupakan versi LAN yang berukuran lebih besar dan biasanya menggunakan teknologi yang sama dengan LAN. MAN dapat mencakup kantor-kantor perusahaan yang letaknya berdekatan atau juga sebuah kota dan dapat dimanfaatkan untuk keperluan pribadi (swasta) atau umum. MAN mampu menunjang data dan suara, bahkan dapat berhubungan dengan jaringan televisi kabel.
3.2.3. Wide Area Network (WAN)
Wide Area Network (WAN), jangkauannya mencakup daerah geografis yang luas, seringkali mencakup sebuah negara bahkan benua. WAN terdiri dari kumpulan mesinmesin yang bertujuan untuk menjalankan program-program (aplikasi) pemakai.
3.2.4. Internet
Sebenarnya terdapat banyak jaringan didunia ini, seringkali menggunakan perangkat keras dan perangkat lunak yang berbeda-beda . Orang yang terhubung ke jaringan sering berharap untuk bisa berkomunikasi dengan orang lain yang terhubung ke jaringan lainnya. Keinginan seperti ini memerlukan hubungan antar jaringan yang seringkali tidak kampatibel dan berbeda. Biasanya untuk melakukan hal ini diperlukan sebuah mesin yang disebut gateway guna melakukan hubungan dan melaksanakan terjemahan yang diperlukan, baik perangkat keras maupun perangkat lunaknya. Kumpulan jaringan yang terinterkoneksi inilah yang disebut dengan internet.
3.2.5. Jaringan Tanpa Kabel
Jaringan tanpa kabel merupakan suatu solusi terhadap komukasi yang tidak bias dilakukan dengan jaringan yang menggunakan kabel. Misalnya orang yang ingin mendapat informasi atau melakukan komunikasi walaupun sedang berada diatas mobil atau pesawat terbang, maka mutlak jaringan tanpa kabel diperlukan karena koneksi kabel tidaklah mungkin dibuat di dalam mobil atau pesawat. Saat ini jaringan tanpa kabel sudah marak digunakan dengan memanfaatkan jasa satelit dan mampu memberikan kecepatan akses yang lebih cepat dibandingkan dengan jaringan yang menggunakan kabel.
3.3. Topologi Jaringan Komputer
Topologi adalah suatu cara menghubungkan komputer yang satu dengan computer lainnya sehingga membentuk jaringan. Cara yang saat ini banyak digunakan adalah bus, token-ring, star dan peer-to-peer network. Masing-masing topologi ini mempunyai ciri khas, dengan kelebihan dan kekurangannya sendiri.
3.3.1.Topologi BUS
Pada topologi Bus, kedua unjung jaringan harus diakhiri dengan sebuah terminator. Barel connector dapat digunakan untuk memperluasnya. Jaringan hanya terdiri dari satu saluran kabel yang menggunakan kabel BNC. Komputer yang ingin terhubung ke jaringan dapat mengkaitkan dirinya dengan mentap Ethernetnya sepanjang kabel.
Linear Bus: Layout ini termasuk layout yang umum. Satu kabel utama menghubungkan tiap simpul, ke saluran tunggal komputer yang mengaksesnya ujung dengan ujung. Masing-masing simpul dihubungkan ke dua simpul lainnya, kecuali mesin di salah satu ujung kabel, yang masing-masing hanya terhubung ke satu simpul lainnya. Topologi ini seringkali dijumpai pada sistem client/server, dimana salah satu mesin pada jaringan tersebut difungsikan sebagai File Server, yang berarti bahwa mesin tersebut dikhususkan hanya untuk pendistribusian data dan biasanya tidak digunakan untuk pemrosesan informasi.
Instalasi jaringan Bus sangat sederhana, murah dan maksimal terdiri atas 5-7 komputer. Kesulitan yang sering dihadapi adalah kemungkinan terjadinya tabrakan data karena mekanisme jaringan relatif sederhana dan jika salah satu node putus maka akan mengganggu kinerja dan trafik seluruh jaringan.
Keuntungan
• Hemat kabel
• Layout kabel sederhana
• Mudah dikembangkan
Kerugian
• Deteksi dan isolasi kesalahan sangat kecil
• Kepadatan lalu lintas
• Bila salah satu client rusak, maka jaringan tidak bisa berfungsi.
• Diperlukan repeater untuk jarak jauh
3.3.2. Topologi TokenRING
Metode token-ring (sering disebut ring saja) adalah cara menghubungkan computer sehingga berbentuk ring (lingkaran). Setiap simpul mempunyai tingkatan yang sama. Jaringan akan disebut sebagai loop, data dikirimkan kesetiap simpul dan setiap informasi yang diterima simpul diperiksa alamatnya apakah data itu untuknya atau bukan.
Keuntungan
• Hemat Kabel
Kerugian
• Peka kesalahan
• Pengembangan jaringan lebih kaku
3.3.3. Topologi STAR
Kontrol terpusat, semua link harus melewati pusat yang menyalurkan data tersebut kesemua simpul atau client yang dipilihnya. Simpul pusat dinamakan stasium primer atau server dan lainnya dinamakan stasiun sekunder atau client server. Setelah hubungan jaringan dimulai oleh server maka setiap client server sewaktu-waktu dapat menggunakan hubungan jaringan tersebut tanpa menunggu perintah dari server.
Keuntungan
• Paling fleksibel
• Pemasangan/perubahan stasiun sangat mudah dan tidak mengganggu bagian
jaringan lain
• Kontrol terpusat
• Kemudahan deteksi dan isolasi kesalahan/kerusakan
• Kemudahaan pengelolaan jaringan
Kerugian
• Boros kabel
• Perlu penanganan khusus
• Kontrol terpusat (HUB) jadi elemen kritis
3.3.4. Topologi Peer-to-peer Network
Peer artinya rekan sekerja. Peer-to-peer network adalah jaringan komputer yang terdiri dari beberapa komputer (biasanya tidak lebih dari 10 komputer dengan 1-2 printer). Dalam sistem jaringan ini yang diutamakan adalah penggunaan program, data dan printer secara bersama-sama. Pemakai komputer bernama Dona dapat memakai program yang dipasang di komputer Dino, dan mereka berdua dapat mencetak ke printer yang sama pada saat yang bersamaan. Sistem jaringan ini juga dapat dipakai di rumah. Pemakai komputer yang memiliki komputer ‘kuno’, misalnya AT, dan ingin memberli komputer baru, katakanlah Pentium II, tidak perlu membuang komputer lamanya. Ia cukup memasang netword card di kedua komputernya kemudian dihubungkan dengan kabel yang khusus digunakan untuk sistem jaringan. Dibandingkan dengan ketiga cara diatas, sistem jaringan ini lebih sederhana sehingga lebih mudah dipejari dan dipakai.
3.3.5. Topologi MESH
Topologi jaringan ini menerapkan hubungan antar sentral secara penuh. Jumlah saluran harus disediakan untuk membentuk jaringan Mesh adalah jumlah sentral dikurangi 1 (n-1, n = jumlah sentral). Tingkat kerumitan jaringan sebanding dengan meningkatnya jumlah sentral yang terpasang. Dengan demikian disamping kurang ekonomis juga relatif mahal dalam pengoperasiannya.
3.3.6.Topologi POHON
Topologi jaringan ini disebut juga sebagai topologi jaringan bertingkat. Topologi ini biasanya digunakan untuk interkoneksi antar sentral denganhirarki yang berbeda. Untuk hirarki yang lebih rendah digambarkan pada lokasi yang rendah dan semakin keatas mempunyai hirarki semakin tinggi. Topologi jaringan jenis ini cocok digunakan pada sistem jaringan komputer .
Pada jaringan pohon, terdapat beberapa tingkatan simpul (node). Pusat atau simpul yang lebih tinggi tingkatannya, dapat mengatur simpul lain yang lebih rendah tingkatannya. Data yang dikirim perlu melalui simpul pusat terlebih dahulu. Misalnya untuk bergerak dari komputer dengan node-3 kekomputer node-7 seperti halnya pada gambar, data yang ada harus melewati node-3, 5 dan node-6 sebelum berakhir pada node-7.
Keungguluan jaringan model pohon seperti ini adalah, dapat terbentuknya suatu kelompok yang dibutuhkan pada setiap saat. Sebagai contoh, perusahaan dapat membentuk kelompok yang terdiri atas terminal pembukuan, serta pada kelompok lain dibentuk untuk terminal penjualan. Adapun kelemahannya adalah, apabila simpul yang lebih tinggi kemudian tidak berfungsi, maka kelompok lainnya yang berada dibawahnya akhirnya juga menjadi tidak efektif. Cara kerja jaringan pohon ini relatif menjadi lambat.
3.3.7. Topologi LINIER
Jaringan komputer dengan topologi linier biasa disebut dengan topologi linier bus, layout ini termasuk layout umum. Satu kabel utama menghubungkan tiap titik koneksi (komputer) yang dihubungkan dengan konektor yang disebut dengan T Connector dan pada ujungnya harus diakhiri dengan sebuah terminator. Konektor yang digunakan bertipe BNC (British Naval Connector), sebenarnya BNC adalah nama konektor bukan nama kabelnya, kabel yang digunakan adalah RG 58 (Kabel Coaxial Thinnet). Installasi dari topologi linier bus ini sangat sederhana dan murah tetapi maksimal terdiri dari 5-7 Komputer.
Tipe konektornya terdiri dari
1. BNC Kabel konektor ---> Untuk menghubungkan kabel ke T konektor.
2. BNC T konektor ---> Untuk menghubungkan kabel ke komputer.
3. BNC Barrel konektor ---> Untuk menyambung 2 kabel BNC.
4. BNC Terminator ---> Untuk menandai akhir dari topologi bus.
Keuntungan dan kerugian dari jaringan komputer dengan topologi linier bus adalah :
• Keuntungan, hemat kabel, layout kabel sederhana, mudah dikembangkan, tidak butuh kendali pusat, dan penambahan maupun pengurangan terminal dapat dilakukan tanpa mengganggu operasi yang berjalan.
• Kerugian, deteksi dan isolasi kesalahan sangat kecil, kepadatan lalu lintas tinggi, keamanan data kurang terjamin, kecepatan akan menurun bila jumlah pemakai bertambah, dan diperlukan Repeater untuk jarak jauh.
3.4. Manfaat Jaringan Komputer
• Resource Sharing, dapat menggunakan sumberdaya yang ada secara bersamasama. Misal seorang pengguna yang berada 100 km jauhnya dari suatu data, tidak mendapatkan kesulitan dalam menggunakan data tersebut, seolah-olah data tersebut berada didekatnya. Hal ini sering diartikan bahwa jaringan computer mangatasi masalah jarak.
• Reliabilitas tinggi, dengan jaringan komputer kita akan mendapatkan reliabilitas yang tinggi dengan memiliki sumber-sumber alternatif persediaan. Misalnya, semua file dapat disimpan atau dicopy ke dua, tiga atu lebih komputer yang terkoneksi kejaringan. Sehingga bila salah satu mesin rusak, maka salinan di mesin yang lain bisa digunakan.
• Menghemat uang. Komputer berukutan kecil mempunyai rasio harga/kinerja yang lebih baik dibandingkan dengan komputer yang besar. Komputer besar seperti mainframe memiliki kecapatan kira-kira sepuluh kali lipat kecepatan computer kecil/pribadi. Akan tetap, harga mainframe seribu kali lebih mahal dari computer pribadi. Ketidakseimbangan rasio harga/kinerja dan kecepatan inilah membuat para perancang sistem untuk membangun sistem yang terdiri dari komputerkomputer pribadi.
IV. TYPE JARINGAN KOMPUTER
Pada dasarnya setiap jaringan komputer ada yang berfungsi sebagai client dan juga server. Tetapi ada jaringan yang memiliki komputer yang khusus didedikasikan sebagai server sedangkan yang lain sebagai client. Ada juga yang tidak memiliki komputer yang khusus berfungsi sebagai server saja. Karena itu berdasarkan fungsinya maka ada dua jenis jaringan komputer:
4.1. Client-server
Yaitu jaringan komputer dengan komputer yang didedikasikan khusus sebagai server. Sebuah service/layanan bisa diberikan oleh sebuah komputer atau lebih. Contohnya adalah sebuah domain seperti www.detik.com yang dilayani oleh banyak komputer web server. Atau bisa juga banyak service/layanan yang diberikan oleh satu komputer. Contohnya adalah server jtk.polban.ac.id yang merupakan satu komputer dengan multi service yaitu mail server, web server, file server, database server dan lainnya.
4.2. Peer-to-peer
Yaitu jaringan komputer dimana setiap host dapat menjadi server dan juga menjadi client secara bersamaan. Contohnya dalam file sharing antar komputer di Jaringan Windows Network Neighbourhood ada 5 komputer (kita beri nama A,B,C,D dan E) yang memberi hak akses terhadap file yang dimilikinya. Pada satu saat A mengakses file share dari B bernama data_nilai.xls dan juga memberi akses file soal_uas.doc kepada C. Saat A mengakses file dari B maka A berfungsi sebagai client dan saat A memberi akses file kepada C maka A berfungsi sebagai server. Kedua fungsi itu dilakukan oleh A secara bersamaan maka jaringan seperti ini dinamakan peer to peer.
V. Protokol
Protokol adalah aturan-aturan main yang mengatur komunikasidiantara beberapa komputer di dalam sebuah jaringan, aturan itu termasuk di dalamnya petunjuk yang berlaku bagi cara-cara atau metode mengakses sebuah jaringan, topologi fisik, tipe-tipe kabel dan kecepatan transfer data. Protokol-Protokol yang dikenal adalah sebagai berikut
5.1.Ethernet
Protocol Ethernet sejauh ini adalah yang paling banyak digunakan, Ethernet menggunakan metode akses yang disebut CSMA/CD (Carrier Sense Multiple Access/Collision Detection). Sistem ini menjelaskan bahwa setiap komputer memperhatikan ke dalam kabel dari network sebelum mengirimkan sesuatu ke dalamnya. Jika dalam jaringan tidak ada aktifitas atau bersih computer akan mentransmisikan data, jika ada transmisi lain di dalam kabel, komputer akan menunggu dan akan mencoba kembali transmisi jika jaringan telah bersih. kadangkala dua buah komputer melakukan transmisi pada saat yang sama, ketika hal ini terjadi, masing-masing komputer akan mundur dan akan menunggu kesempatan secara acak untuk mentransmisikan data kembali. metode ini dikenal dengan koalisi, dan tidak akan berpengaruh pada kecepatan transmisi dari network.
Protokol Ethernet dapat digunakan untuk pada model jaringan Garis lurus , Bintang, atau Pohon . Data dapat ditransmisikan melewati kabel twisted pair, koaksial, ataupun kabel fiber optic pada kecepatan 10 Mbps.
5.2.LocalTalk
LocalTalk adalah sebuh protokol network yang di kembangkan oleh Apple Computer, Inc. untuk mesin-mesin komputer Macintosh . Metode yang digunakan oleh LocalTalk adalah CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). Hampir sama dengan CSMA/CD.. Adapter LocalTalk dan cable twisted pair khusus dapat digunakan untuk menghubungkan beberapa computer melewati port serial. Sistem Operasi Macintosh memungkinkan koneksi secara jaringan peer-to-peer tanpa membutuhkan tambahan aplikasi khusus Protokol LocalTalk dapat digunakan untuk model jaringan Garis Lurus , Bintang , ataupun model Pohon dengan menggunakan kabel twisted pair . Kekurangan yang paling mencolok yaitu kecepatan transmisinya. Kecepatan transmisinya hanya 230 Kbps.
5.3.Token Ring
Protokol Token di kembangkan oleh IBM pada pertengahan tahun 1980. Metode Aksesnya melalui lewatnya sebuah token dalam sebuah lingkaran seperti Cincin . Dalam lingkaran token, komputer-komputer dihubungkan satu dengan yang lainnya seperti sebuah cincin. Sebuah Sinyal token bergerak berputar dalamsebuah lingkaran (cincin) dalam sebuah jaringan dan bergerak dari sebuah komputer-menuju ke komputer berikutnya, jika pada persinggahan di salah satu komputer ternyata ada data yang ingin ditransmisikan, token akan mengangkutnya ke tempat dimana data itu ingin ditujukan, token bergerak terus untuk saling mengkoneksikan diantara masing-masing komputer.
Protokol Token Ring membutuhkan model jaringan Bintang dengan menggunakan kabel twisted pair atau kabel fiber optic . Dan dapat melakukan kecepatan transmisi 4 Mbps atau 16 Mbps. Sejalan dengan perkembangan Ethernet, penggunaan Token Ring makin berkurang sampai sekarang.
5.4.FDDI
Fiber Distributed Data Interface (FDDI) adalah sebuah Protokol jaringan yang menghubungkan antara dua atau lebih jaringan bahkan pada jarak yang jauh . Metode aksesnyayang digunakan oleh FDDI adalah model token . FDDI menggunakan dua buah topologi ring secara fisik. Proses transmisi baiasanya menggunakan satu buah ring, namun jika ada masalah ditemukan akan secara otomatis menggunakan ring yang kedua.
Sebuah keuntungan dari FDDI adalah kecepatan dengan menggunakan fiber optic cable pada kecepatan 100 Mbps.
5.5.ATM
ATM adalah singkatan dari Asynchronous Transfer Mode (ATM) yaitu sebuah protokol jaringan yang mentransmisikan pada kecepatan 155 Mbps atau lebih . ATM mentarnsmisikan data kedalam satu paket dimana pada protokol yang lain mentransfer pada besar-kecilnya paket. ATM mendukung variasi media seperti video, CD-audio, dan gambar. ATM bekerja pada model topologi Bintang , dengan menggunakan Kabel fiber optic ataupun kabel twisted pair . ATM pada umumnya digunakan untuk menghubungkan dua atau lebih LAN . dia juga banyak dipakai oleh Internet Service Providers (ISP) untuk meningkatkan kecepatan akses Internet untuk klien mereka
VI. Referensi Model OSI (Open System Interconnection)
Model referensi OSI merupakan model kerangka kerja yang diterima secara global bagi pengembangan standar yang lengkap dan terbuka. Model OSI membantu menciptakan standar terbuka antar system untuk saling berhubungan dan saling berkomunikasi terutama dalam bidang teknologi informasi.
Model referensi OSI secara konseptual terbagi ke dalam 7 lapisan dimana masing-masing lapisan memiliki fungsi jaringan yang spesifik. Model ini diciptakan berdasarkan sebuah proposal yang dibuat oleh The International Standards Organization (ISO) sebagai langkah awal menuju standarisasi protokol Internasional yang digunakan pada berbagai Layer .
Model OSI memiliki tujuh Layer. Prinsip-prinsip yang digunakan bagi ketujuh Layer tersebut adalah :
1. Sebuah Layer harus dibuat bila diperlukan tingkat abstraksi yang berbeda.
2. Setiap Layer harus memiliki fungsi-fungsi tertentu.
3. Fungsi layer di bawahnya adalah sebagai pendukung fungsi layer di atasnya.
4. Fungsi setiap Layer harus dipilih dengan teliti sesuai dengan ketentuan standar protocol internasional.
5. Batas-batas Layer diusahakan agar meminimalkan aliran informasi yang melewati interface.
6. Jumlah Layer harus cukup banyak, sehingga fungsi-fungsi yang berbeda tidak perlu disatukan dalam satu Layer diluar keperluannya. Akan tetapi jumlah Layer juga harus diusahakan sesedikit mungkin ehingga arsitektur jaringan tidak menjadi sulit dipakai.
6.1.Tujuan OSI
1. Koordinasi berbagai kegiatan.
2. Penyimpanan data.
3. Manajemen sumber dan proses.
4. Keandalan dan keamanan sistem pendukung perangkat lunak.
5. Membuat kerangka agar sistem / jaringan yang mengikutinya dapat saling berkomunikasi/ saling bertukar informasi, sehingga tidak tergantung merk dan model peralatan.
6. 3 layer pertama adalah interface antara terminal dan jaringan yang dipakai bersama, 4 layer selanjutnya adalah hubungan antara software.
7. Antar layer berlainan terdapat interface, layer yang sama terdapat protokol.
6.2.Pengelompokan Layer OSI
Upper layers fokus pada aplikasi pengguna dan bagaimana file direpresentasikan di komputer. Upper layers berurusan dengan persoalan aplikasi dan pada umumnya diimplementasi hanya pada software.
Lower layers merupakan intisari komunikasi data melalui jaringan aktual. Lower layers mengendalikan persoalan transport data. Lapisan fisik dan lapisan data link diimplementasikan ke dalam hardware dan software. Lower layers yang lain pada umumnya hanya diimplementasikan dalam software.
6.3.Interaksi antar layer OSI
Interaksi antar layer OSI yang dapat terjadi adalah seperti gambar di bawah ini:
Interaksi dengan layer diatasnya.
Interaksi dengan layer peer di sistem yang berbeda.
Interaksi dengan layer dibawahnya.
Model OSI dan Komunikasi antar sistem dapat di gambarkan seperti gambar di bawah ini :
6.4. Layer-layer OSI
Model referensi OSI secara konsepsual terbagi ke dalam 7 lapisan dimana masing-masing lapisan memiliki fungsi jaringan yang spesifik, seperti yang dijelaskan dibawah ini :
• Physical Layer
Physical Layer berfungsi dalam pengiriman raw bit ke channel komunikasi. Masalah desain yang harus diperhatikan disini adalah memastikan bahwa bila satu sisi mengirim data 1 bit, data tersebut harus diterima oleh sisi lainnya sebagai 1 bit juga, dan bukan 0 bit. Secara umum masalah-masalah desain yang ditemukan di sini berhubungan secara mekanik, elektrik dan interface prosedural, dan media fisik yang berada di bawah lapisan fisik.
• Data link Layer
Tugas utama data link Layer adalah sebagai fasilitas transmisi raw data dan mentransformasi data tersebut ke saluran yang bebas dari kesalahan transmisi. Sebelum diteruskan ke Network Layer, data link Layer melaksanakan tugas ini dengan memungkinkan pengirim memecah-mecah data input menjadi sejumlah data frame (biasanya berjumlah ratusan atau ribuan byte). Kemudian data link Layer mentransmisikan frame tersebut secara berurutan , dan memproses acknowled- gement frame yang dikirim kembali oleh penerima. Masalah-masalah lainnya yang timbul pada data link Layer (dan juga sebagian besar Layer-Layer di atasnya) adalah mengusahakan kelancaran proses pengiriman data dari pengirim yang cepat ke penerima yang lambat. Mekanisme pengaturan lalu-lintas data harus memungkinkan pengirim mengetahui jumlah ruang buffer yang dimiliki penerima pada suatu saat tertentu. Secara umum tugas
utama dari data link dalam proses komunikasi data adalah :
1. Framing : Membagi bit stream yang diterima dari lapisan network menjadi unit-unit data yang disebut frame.
2. Physical Addressing : definisi identitas pengirim dan /atau penerima yang ditambahkan dalam header.
3. Flow Control : melakukan tindakan untuk membuat stabil laju bit jika rate atau laju bit stream berlebih atau berkurang.
4. Error Control : penambahan mekanisme deteksi dan retransmisi frame-frame yang gagal terkirim.
5. Communication Control : menentu-kan device yang harus dikendalikan pada saat tertentu jika ada dua koneksi yang sama.
• Network Layer
Network Layer berfungsi untuk pengendalian operasi subnet. Masalah desain yang penting adalah bagaimana caranya menentukan route pengiriman paket dari sumber ke tujuannya. Bila pada saat yang sama dalam sebuah subnet terdapat terlalu banyak paket, maka ada kemungkinan paket-paket tersebut tiba pada saat yang bersamaan. Hal ini dapat menyebabkan terjadinya bottleneck. Pengendalian kemacetan seperti itu juga merupakan tugas Network Layer. memungkinkan jaringan-jaringan yang berbeda seperti protocol yang berbeda, pengalamatan dan Arsitektur jaringan yang berbeda untuk saling terinterkoneksi. Secara umum tugas utama dari Network dalam proses komunikasi data adalah :
1. Logical Addressing : pengalamatan secara logis ditambahkan pada header lapisan network. Pada jaringa TCP/IP pengalamatan logis ini dikenal dengan sebutan IP Address.
2. Routing : Hubungan antar jaringan yang membentuk internet-work membutuhkan metode jalur alamat agar paket dapat ditransferdari satu device yang berasal dari jaringan satu menuju device lain pada jaringan yang lain. Fungsi routing didukung oleh routing protocol yaitu protocol yang bertujuan mencari jalan terbaik manuju tujuan dan tukar-menukar informasi tentang topologi jaringan dengan router yang lainnya.
• Transport Layer
Fungsi dasar transport Layer adalah menerima data dari session Layer, memecah data menjadi bagian-bagian yang lebih kecil bila perlu, meneruskan data ke Network Layer, dan menjamin bahwa semua potongan data tersebut bisa tiba di sisi lainnya dengan benar. Selain itu, semua hal tersebut harus dilaksanakan secara efisien, dan bertujuan dapat melindungi Layer-Layer bagian atas dari perubahan teknologi hardware yang tidak dapat dihindari.
• Session Layer
Session Layer mengijinkan para pengguna untuk menetapkan session dengan pengguna lainnya. Sebuah session selain memungkinkan transport data biasa, seperti yang dilakukan oleh transport Layer, juga menyediakan layanan yang istimewa untuk aplikasi-aplikasi tertentu. Sebuah session digunakan untuk memungkinkan seseorang pengguna log ke remote timesharing system atau untuk memindahkan file dari satu mesin kemesin lainnya.
• Presentation Layer
Pressentation Layer melakukan fungsi-fungsi tertentu yang diminta untuk menjamin penemuan sebuah penyelesaian umum bagi masalah tertentu. Pressentation Layer tidak mengijinkan pengguna untuk menyelesaikan sendiri suatu masalah. presentation Layer memperhatikan syntax dan semantik informasi yang dikirimkan contoh layanan pressentation adalah encoding data.
• Application Layer
Application Layer memiliki fungsi untuk menentukan terminal virtual jaringan abstrak, serhingga editor dan program-program lainnya dapat ditulis agar saling bersesuaian. Untuk menangani setiap jenis terminal, satu bagian software harus ditulis untuk memetakan fungsi terminal virtual jaringan ke terminal sebenarnya. Fungsi Application Layer lainnya adalah pemindahan file. Sistem file yang satu dengan yang lainnya memiliki konvensi penamaan yang berbeda, cara menyatakan baris-baris teks yang berbeda, dan sebagainya. Perpindahan file dari sebuah sistem ke sistem lainnya yang berbeda memerlukan penanganan untuk mengatasi adanya ketidak-kompatibelan ini. Tugas appication Layer, seperti pada surat elektronik, remote job entry, directory lookup, dan berbagai fasilitas bertujuan umum dan fasilitas bertujuan khusus lainnya. Protokol-protokol yang terdapat pada lapisan aplikasi diantaranya adalah FTP, SMTP, dan HTTP.
VII. Referensi Model TCP/IP(Transfer Control Protokol/Internet Protocol)
Arsitektur TCP/IP lebih sederhana dari pada tumpukan protokol OSI, yaitu berjumlah 5 lapisan protokol. Jika diperhatikan pada Gambar Perbandingan TCP/IP dan OSI, ada beberapa lapisan pada model OSI yang dijadikan satu pada arsitektur TCP/IP. Gambar tersebut juga menjelaskan protokol-protokol apa saja yang digunakan pada setiap lapisan di TCP/IP model. Beberapa protokol yang banyak dikenal adalah FTP (File Transfer Protocol) yang digunakan pada saat pengiriman file. HTTP merupakan protokol yang dikenal baik karena banyak digunakan untuk mengakses halaman-halaman web di Internet.
Berikut penjelasan lapisan layanan pada TCP/IP:
• Lapian Application, menyediakan komunikasi antar proses atau aplikasi pada host yang berjauhan namun terhubung pada jaringan.
• Lapisan Transport (End-to-End), menyediakan layanan transfer end-toend. Lapisan ini juga termasuk mekanisme untuk menjamin kehandalan transmisi datanya. Layanan ini tentu saja akan menyembunyikan segala hal yang terlalu detail untuk lapisan di atasnya.
• Lapisan Internetwork, fokus pada pemilihan jalur (routing) data dari host sumber ke host tujuan yang melewati satu atau lebih jaringan yang berbeda dengan menggunakan router.
• Layanan Network Access/Data link, mendefinisikan antarmuka logika antara sistem dan jaringan.
• Lapisan Physical, mendefinisikan karakteristik dari media transmisi, pensinyalan dan skema pengkodean sinyal.
0 komentar:
Posting Komentar